翻訳と辞書
Words near each other
・ Cyclotetradecane
・ Cycloteuthidae
・ Cycloteuthis
・ Cycloteuthis sirventi
・ Cyclothea
・ Cyclotheca
・ Cyclothems
・ Cyclothiazide
・ Cyclothiazomycin
・ Cyclothone
・ Cyclothorax
・ Cyclothymia
・ Cyclothyris
・ Cyclotide
・ Cyclotol
Cyclotomic character
・ Cyclotomic fast Fourier transform
・ Cyclotomic field
・ Cyclotomic identity
・ Cyclotomic polynomial
・ Cyclotomic unit
・ Cyclotorna
・ Cyclotorna diplocentra
・ Cyclotorna egena
・ Cyclotorna ementita
・ Cyclotorna experta
・ Cyclotorna monocentra
・ Cyclotosaurus
・ Cyclotrachelus
・ Cyclotrichium


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Cyclotomic character : ウィキペディア英語版
Cyclotomic character
In number theory, a cyclotomic character is a character of a Galois group giving the Galois action on a group of roots of unity. As a one-dimensional representation over a ring ''R'', its representation space is generally denoted by ''R''(1) (that is, it is a representation ).
==''p''-adic cyclotomic character==
If ''p'' is a prime, and ''G'' is the absolute Galois group of the rational numbers, the ''p''-adic cyclotomic character is a group homomorphism
:\chi_p:G\rightarrow\mathbf_p^\times
where Z''p''× is the group of units of the ring of p-adic integers. This homomorphism is defined as follows. Let ''ζ''''n'' be a primitive ''p''''n'' root of unity. Every ''p''''n'' root of unity is a power of ''ζ''''n'' uniquely defined as an element of the ring of integers modulo ''p''''n''. Primitive roots of unity correspond to the invertible elements, i.e. to (Z/''p''''n'')×. An element ''g'' of the Galois group ''G'' sends ''ζ''''n'' to another primitive ''p''''n'' root of unity
:\theta=\zeta_n^{a_{g,n}}
where ''a''''g'',''n'' ∈ (Z/''p''''n'')×. For a given ''g'', as ''n'' varies, the ''a''''g'',''n'' form a comptatible system in the sense that they give an element of the inverse limit of the (Z/''p''''n'')×, which is Zp×. Therefore, the ''p''-adic cyclotomic character sends ''g'' to the system (''a''''g'',''n'')''n'', thus encoding the action of ''g'' on all ''p''-power roots of unity.
In fact, \chi_p is a continuous homomorphism (where the topology on ''G'' is the Krull topology, and that on Z''p''× is the p-adic topology).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Cyclotomic character」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.